Species Composition and Diurnal Activity Rhythm of Tabanids (Diptera: Tabanidae) at the Ivindo National Park and Its Environs

Affiri Odzame Joseph-Marie¹, Sevidzem Silas Lendzele²*, Zinga Koumba Christophe Roland³, Mounioko Franck¹, Koumba Armel Aubin³, Rodrigue Mintsa³, Acapovi-Yao Genevieve Lydie⁴, M’batchi Bertrand¹ and Jacques François Mavoungou¹,³

¹Université des Sciences et Techniques de MASUKU, BP 941, Franceville, Gabon. ²Ecole Doctorale des Grandes Ecoles (EDGE), Libreville, Gabon. ³Institut de Recherche en Ecologie Tropicale (IRET), BP 13354, Libreville, Gabon. ⁴Université Félix Houphouët-Boigny, UFR Biosciences 22, BP: 582; Abidjan 22, Côte d’Ivoire.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors AOJM, SSL, ZKCR, MF and JFM designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors AOJM, SSL and MF managed the analyses of the study. Authors ZKCR, RM, KAA, MF, AYGL, MB and SSL managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRIZ/2019/v2i230062

Editor(s):
(1) Dr. Layla Omran Elmajdoub, Department of Zoology, Faculty of Science, Misurata University, Misurata, Libya.
(2) Dr. Oluyomi A. Sowemimo, Senior Lecturer, Department of Zoology, Obafemi Awolowo University, Nigeria.

Reviewers:
(1) Mohamed Ahmed Gesraha, National Research Centre, Egypt.
(2) Dr. Mário Luis Pessôa Guedes, Fundação do Asseio e Conservação do Estado do Paraná, Brasil.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49021

Received 02 March 2019
Accepted 16 May 2019
Published 20 June 2019

ABSTRACT

An entomological prospection to show the species composition and diurnal activity of tabanids was carried out using 15 Vavoua traps, during the rainy season (25th Sept-5th Oct and 21st Oct-9th Nov 2018), in the secondary forest [Ivindo National Park (INP)] and Village-Town sites in and around the biosphere reserve Ipassa-IRET Makokou in Gabon. In total, 839 tabanids were caught with 747 recorded at INP and regrouped under 11 species of the genus Tabanus [T. taeniola (57.76%), T. ricarda (26.32%), T. par (5.54%), T. ruficrus (3.74%), T. socius (3.74%), T. disjunctus (2.49%),...
Tabanids represent a large group of dipterous insects with 4400 species regrouped under 144 genera [1]. Tabanids are a neglected subject of research but are vectors of pathogens of medical and veterinary importance [1,2]. Tabanids are known mechanical vectors of animal Trypanosoma spp., like T. vivax, T. theileri etc. [3] as well as biological vectors (Chrysops silacea and C. dimidiata) of Loa loa filariasis [4,5,6].

In Gabon, there is no longitudinal study on tabanids, but the few existing reports on this group are cross sectional studies carried out in some protected areas and their environs [7,8,9,10,11].

The biting activity pattern of tabanids have been established for forest and savanna groups [5,12]. The activity patterns vary with conditions of micro-environment across seasons with activity peaks ranging from unimodal, bimodal, trimodal etc [1,5]. However, no information exists on the activity rhythm of tabanids with respect to sex at the Ivindo National Park (INP) and its environs. The present entomological prospection aims at determining the abundance and diurnal activity profile of tabanids at the Ivindo National Park and its surrounding.

2. MATERIALS AND METHODS

2.1 Study Area

The study was carried out in Makokou, located in the Ogouë-Ivindo province in North-East Gabon. Trapping was carried out at the Institute of Research for Tropical Ecology (IRET) of Ipassa (0°.51’N; 12° 79’E) and its environs (0°.52’N; 12° 82’E) (Fig. 1), elevated at an altitude of 500m [13]. The climate is of the equatorial and humid type with alternating rainy and dry seasons. The mean annual rainfall is 1600 to 1800mm while the mean annual temperatures are close to 24°C. The annual and daily thermal amplitudes are weak [7] and the main water body in the area is river Ivindo. The entomological prospection was carried out during the rainy season (25th Sept-5th Oct and 21st Oct-9th Nov 2018). The forest fauna of Gabon is rich and diversified and the Makokou region holds a significant share with one of the highest listed fauna in Gabon. It consists of 128 species of mammals, 424 species of birds, 65 species of reptiles, 47 species of amphibians among others [7].

2.2 Capture of Tabanids

Trapping was carried out using 15 Vavoua traps [14]. Vavoua traps have been reported to be efficient in the collection of tabanids [15]. Traps were set along a transect of about 17km, following the anthropogenic gradient from the secondary forest in the INP (non-anthropized environment), to the Village and Makokou town (highly anthropized environment). Trapping duration was 30 days. The 15 traps were divided into the two study areas, at a ratio of 7-8 traps per milieu. Trapping effort was: 15 traps × 30 days = 450 traps days. The traps were activated in the morning at 8 am and emptied at 6 pm. All trap cages were tagged with the trap number and date and returned to the laboratory. They were then placed in a freezer for 15 minutes to kill the insect prior identification. Identification was carried out using the dissecting microscope (LABOMED®, France) of the field station laboratory of IRET-Ipassa in Makokou.

2.3 Daily Activity Rhythm

The diurnal activity pattern of tabanids in the study area was carried out using three traps in each of the prospection site for three days consecutively during prospection days. The
follow-up diurnal time ranges for this trial was 8-10H, 10-12H, 12-14H, 14-16H and 16-18H. Trap-tags consisted of date, location and time interval.

2.4 Fly Identification

The identification of tabanids was carried out using the identification key of Oldroyd [16].

The abundance was defined by the Trap Apparent Density (ADT) known as the number of tabanids caught per trap and day:

$$\text{ADT} = \frac{\text{Number of tabanids flies captured}}{\text{Number of traps} \times \text{Number of trapping days}}$$

2.5 Data Analysis

The statistical analysis was carried out using SPSS version 20. The one-way ANOVA on ranks was used to compare the ADT in the two prospection biotopes. The level significance was set at $P<0.05$.

3. RESULTS

3.1 The Species Composition of Tabanids with Respected to Prospection Site

In total, 839 tabanids were caught with 747 collected at the INP which consisted of 11 species regrouped under three genera notably Tabanus, Chrysops and Haematopota. At the INP, Tabanus taeniola was the most frequent species, while Tabanus obscurehirtus and H. pluvialis were very rare (Table 1). At the Village-Town trap-sites, only 92 tabanids were caught and five species identified and all belonged to the genus Tabanus (Table 1). In the Village-Town trap-sites, T. ricardae was the most frequent while T. par and T. marmorosus were very rare (Table 1).

3.2 Abundance of Tabanids with Respect to Prospection Sites

At the INP, Tabanus taeniola was the most abundant species of the genus Tabanus with
Table 1. Percentage of tabanids fly species in prospected locations

<table>
<thead>
<tr>
<th>Biotope</th>
<th>Genus</th>
<th>Species</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP Tabanus (N=8)</td>
<td>Tabanus</td>
<td>Tabanus taeniola</td>
<td>417</td>
<td>57.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tabanus ricardae</td>
<td>190</td>
<td>26.32</td>
</tr>
<tr>
<td></td>
<td>Chrysops</td>
<td>Chrysops dimidiatus</td>
<td>17</td>
<td>70.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. silaceus</td>
<td>7</td>
<td>29.17</td>
</tr>
<tr>
<td></td>
<td>Haematopota</td>
<td>Haematopota pluvialis</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Village-Town Tabanus (N=5)</td>
<td></td>
<td>Tabanus ruficrus</td>
<td>13</td>
<td>14.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tabanus taeniola</td>
<td>9</td>
<td>9.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tabanus ricardae</td>
<td>68</td>
<td>73.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tabanus par</td>
<td>1</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tabanus marmorosus</td>
<td>1</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>Total Tabanus</td>
<td></td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total Chrysops</td>
<td></td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total Haematopota</td>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 2. The ADT of tabanids in INP (A) and village-town (B)
ADT of 3.99. In Chrysops, Chrysops dimidiata (ADT = 0.16) was the most frequent species in the present collections. However, in the genus Haematopota, only one species was identified with a low apparent density (ADT = 0.01) (Fig. 2A).

In the Village-Town sites, Tabanus ricardae was the most abundant species of the genus Tabanus with ADT of 0.57 (Fig. 2B). The other species notably Tabanus rifucrus and Tabanus taeniola were rarely captured. Tabanus par and Tabanus marmoratus were rarely caught (Fig. 2B). Generally, the ADT of tabanids was higher in the forest (ADT=7.12) as compared to the Village-Town (ADT=0.77) sites with a statistically significant difference (P<0.05).

3.3 Daily Activity Rhythm of Tabanids with Respect to Prospection Sites

At the INP, all the species of tabanids caught showed the same peaks of abundance between 12 and 14H (Fig. 3A). In the Village-Town sites, Tabanus taeniola, Tabanus socius and Tabanus rifucrus showed a unimodal daily activity with peak noticed between 14 to 16H (Fig. 3B). However, Tabanus ricardae was captured with the same abundance between 8 and 10H (Fig. 3B).

4. DISCUSSION

The apparent density per trap and day of tabanids was higher than that reported by
Tabanus taeniola the INP trapping sites with 8 species (with the genus
[20]. such conditions are optimal between 14 to 16H modulators variables have been shown to be the main
prospected sites. The mentioned weather periods that favoured their activity in the
wind speed and relative humidity) during such
meteorological factors (ambient temperature,
time intervals
peak for tabanids in the mentioned periods. The
by Acapovi [20] who showed a unimodal activity
Town (14H). This result is like that obtained
16H). This result is like that obtained
12H). The peak activity of tabanids followed a
ADT of tabanids at the INP
reported for these type
localities [7]. The high
ADT of tabanids at the INP could be linked to the
favourable environmental factors such as
ambient temperature, relative humidity, rainfall
and high host density [1] prevailing in the site
that fostered the high development and survival
of this group. It was interesting to find out that
during the prospection period, C. silacae and C.
dimidiata were only caught by traps set-up in the
secondary forest of the INP and never caught by
traps fixed at the Village-Town sites. The
presence of the two species of Chrysops which
amare main vectors of Loa loa filariasis [5] indicates
the risk of the transmission of the parasite to the
human population frequenting the INP as well as
the adjacent villages.

The peak of activity of tabanids followed a
unimodal pattern and occurred at different diurnal
time ranges in the INP (12-14H) and Village-
Town (14-16H). This result is like that obtained
by Acapovi [20] who showed a unimodal activity
peak for tabanids in the mentioned periods. The
high tabanid abundance in the various diurnal
time intervals could be related to the prevailing
meteorological factors (ambient temperature,
wind speed and relative humidity) during such
periods that favoured their activity in the
prospected sites. The mentioned weather
variables have been shown to be the main
modulators of the activity of tabanids [1] and
such conditions are optimal between 14 to 16H
[20].

5. CONCLUSION

The genus Tabanus was highly represented at
the INP trapping sites with 8 species (with Tabanus taeniola as the most abundant species)
and less represented in anthropized environment with 4 species (with T. ricardae as the most
abundant species). Three species notably Chrysops dimidiata, Chrysops silacae and
Haematopota pluvialis were only identified in the secondary forest of the INP. The peak activity of
tabanids in the Village-Town sites occurred
between 14-16H while that at the INP occurred
between 12-14H.

ACKNOWLEDGEMENTS

We are grateful for logistic support of the IRET
field station laboratory in Ipas-Makokou. We
thank Owono Assoumou Michel Claude for
providing the map of the study area. We
appreciate the forest guard of the ANPN who
assisted during trapping in the forest.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Baldacchino F, Desquesnes M, Mihok S,
Foil LD, Duvallet G, Jittapalapong S. Tabanids:
Neglected subjects of research, but important
vectors of disease agents. Infection, Genetics and
2. Duvallet G, Boulanger N, Robert V.
Arthropods: Definition and Medical
Importance. Chapter 2 in Skin and
Arthropod Vectors. Edited by Nathalie
Boulangie; Elsevier Inc. 2018;29-51.
3. Desquesnes M, Dia ML. Mechanical
transmission of Trypanosoma vivax in
cattle by the African tabanid Atylotus
fuscipes. Veterinary Parasitology. 2004;
4. Toure FS, Mavoungou E, Deloron P,
Egwang TG. Analyse comparative de deux
méthodes de diagnostiques de la loase
humaine: Sérologie IgG4 et PCR nichée.
Bulletin de la Société de Pathologie
5. WanjI S, Tendongfor N, Esum M,
Atanga SN, Enyong P. Heterogeneity in
the prevalence and intensity of loiasis in
five contrasting bioecological zones in
Cameroon. Trans. Royal Society of
Tropical Medicine and Hygiene. 2003;97:
182-187.
M, Unnasch TR, Molyneux D. Loa loa

© 2019 Joseph-Marie et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49021