Lymphocystic Disease in Wild Croaker (*Micropogonias furnieri*) and Flounder (*Paralichthys orbignyanus*)

V. F. Pedrosa1*, M. C. Klosterhoff2, A. F. F. de Medeiros1, C. A. Paz-Villarraga3 and L. A. Romano1

1Laboratory of Immunology and Pathology of Aquatic Organisms, Institute of Oceanography, Federal, University of Rio Grande, Rio Grande, Brazil.
2Federal University of Pampa, Upper Course of Technology in Aquaculture, Campus Uruguaiana, RS, Brazil.
3Laboratory of Organic Microcontaminants and Aquatic Ecotoxicology, Institute of Oceanography, Federal University of Rio Grande, RS, Brazil.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors VFP and LAR made the diagnosis. Author MCK managed the writing and research of literature. Author CAPV was responsible for forwarding the exemplary of *Micropogonias furnieri*. Author AFFM managed the sample processing for histopathological analysis. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRIZ/2020/v3i330094

Editor(s):
(1) Dr. Jean Beguinot, University of Burgundy, France.
(2) Dr. Golam Mustafa, Bangladesh.

Reviewers:
(1) Homagni Sikha Roy, South West Medical University, China.
(2) Kanchana Subbiah, India.
(3) Vidhya Manohar, Norwich University NHS Foundation Trust, United Kingdom.

Complete Peer review History: http://www.sdiarticle4.com/review-history/60333

Received 29 June 2020
Accepted 05 September 2020
Published 08 September 2020

ABSTRACT

Lymphocystis disease has been reported worldwide in several species of freshwater fish and marine fish, naturally infected in the wild environment, or in intensive crops in farms. Nodular warty lesions of irregular surface were observed in the tegument and fins and mouth in a species of croaker (*Micropogonias furnieri*) caught in Cassino beach Rio Grande RS, Brazil and flounder (*Paralichthys orbignyanus*) caught in the city of San Clemente, Argentina. The skin lesions fragments were fixed in 20% buffered formalin, and the histological sections were stained with hematoxylin and eosin and

*Corresponding author: E-mail: vikavel@yahoo.com.br;
Periodic Acid-Schiff (PAS), where microscopic alterations were visualized in the form of hyaline capsule with small basophilic structures in nodules and fibroblastic cells proliferation. The reported cases were based on the disease macroscopic findings characteristic of a lymphocystis disease, along with the histopathology, which confirmed the presence of the disease in the analyzed tissues.

Keywords: Lymphocystis disease; viruses; marine fish; diagnosis; histopathology.

1. INTRODUCTION

Lymphocystis disease is a viral disease caused by an iridovirus and one of the first viral diseases reported in fish in the 19th century, being first diagnosed in the year 1874 [1]. However, the viral agent was identified by means of electronic microscopy only in 1962 [2] and, subsequently, the virus was isolated from the lineage BF-2 [3]. Structurally, they are large icosahedral viral particles, with variable size from 120 to 340 nm in diameter, depending on the host fish species [4,5]. Although there are studies about the agent of the disease, the disease pathogenesis is still not clearly known [6], being reported as belonging to the genus Lymphocystivirus, within which is inserted the lymphocystis disease virus 1 (LCDV-1) originally isolated from the European flounder Platichthys flesus (Linnaeus, 1758) and from the European plaice, Pleuronectes platessa (Linnaeus, 1758), also included three candidates to the virus in this genus: LCDV-2, isolated from common Limanda limanda (Linnaeus, 1758); LCDV, isolated from the Japanese plaice, Paralichthys olivaceus (Temminck and Schlegel, 1846); and LCDV-RF, isolated from the black scabbardfish, Sebastes schlegelii (Hilgendorf, 1880). The virus of the lymphocystis disease 1 and other related viruses are identified by means of host specificity, histopathology and profile of viral protein and DNA sequences [7].

The virus structure has stability to the pH between 6-9, being resistant to treatment with ultrasound [8], but demonstrate thermal instability, may be inactivated in Ether, glycerol, 5-iododeoxyuridine and UV treatments [1,9], in addition to the decrease of viral infectivity after freezing - thawing cycles at 20°C [3].

The lymphocytic disease has been reported worldwide in several species of freshwater fish and marine, naturally infected in the wild environment, or in intensive crops in farms [5,10-17]. The viral transmission among animals is an important fact in the spread of the disease, since it can occur horizontally through the skin and gills of fish by direct contact among them, being facilitated by traumas in handling, parasitism and animals’ aggressive behavior when maintained at high population densities, and simply by exposure in the virus presence in the water [1,18,19] and in feeding, since artemia nauplii (Artemia sp.) and rotifers (Brachionus plicatilis) may act as virus reservoirs [20,21]. The vertical form of viral transmission may also occur through infected eggs [21].

The disease although is not considered a fatal course and not be a zoonotic disease, has characteristics in fish affected that hinder their commercialization, mainly due to external lesions, where this aspect generates repulsion from the consumer, which leads to economic losses to producers [22]. These characteristics include nodular lesions on the skin of infected animals, being observed microscopically hypertrophy of fibroblasts in the dermis connective tissue, proliferating occasionally as true epithelial tumors on the body surface area [23]. The nodular lesions may be isolated or grouped, rarely being found in the internal organs. Each node represents an infected host cell, which is called lymphocyst or lymphocyst cell [24,25], usually associated to the tissue of the skin and fins, with probable viral multiplication only in fibroblastic cells [26].

The illness itself does not generate high mortalities, since the host in general recovers in a few weeks [27], however, when there is an invasion of bacteria in the lymphocyst lesion site, such infections can be fatal to the animal, already being reported a mortality rate of 90% in Paralichthys olivaceus after possible bacterial infection secondary to the lymphocyte disease [28].

The lymphocyst disease is often confused with neoplastic lesions or parasitary etiology being necessary a proper diagnosis to take appropriate prophylactic measures in the spread of the disease, since the transmission occurs quickly, and may cause serious mortalities without identifying the cause correctly. Here two cases are reported of the disease in different places, with some similar climatic characteristics, which may be a relevant point in their occurrence. Both
species are considered to have potential for aquaculture, with studies showing good condition factors for *M. furnieri* raised in net tanks [29] and the flounder, *P. orbignyanus*, is already a known species in the commercial and recreational area, inhabiting marine and estuarine waters from Brazil (Rio de Janeiro) to Argentina (San Matías Golfo) [30]. (Figueiredo e Menezes, 2000)

2. MATERIALS AND METHODS

Nodular warty lesions were observed of irregular surface in the tegument and fins and mouth in a species of wild croaker (*Micropogonias furnieri*) measuring 19 cm in length and 70.4 g in weight (Fig. 1) a group of animals kept in Cassino beach Rio Grande RS, Brazil and wild flounder (*Paralichthys orbignyanus*) measuring 36 cm in length and 575 g in weight, captured in the city of San Clemente, in Buenos Aires, Argentina (Fig. 2).

The animals were euthanized in benzocaine hydrochloride (300 mg/L) and the autopsy was performed for material collection for histopathological analysis. The skin lesions fragments were fixed in 20% buffered formalin. The tissue samples were subjected to histological processing (LEICA TP 1020) and included in paraplast. The tissue sections were performed to a thickness of 5µ in the microtome Leica RM2245. The histological sections were stained with hematoxylin and eosin and periodic acid-Schiff (PAS).

![Fig. 1. Specimen of Micropogonias furnieri with warty aspect nodular lesions in the tegument and fins (arrows)](image)

![Fig. 2. Specimen of Paralichthys orbignyanus nodular, warty aspect and congestive lesions in the oral region (arrow)](image)
3. RESULTS AND DISCUSSION

In the histopathological examination, microscopic changes were observed in the form of hyaline capsule with small basophilic structures in nodules and proliferation of fibroblastic cells (Fig. 3). These cases of LCDV were diagnosed in wild animals which imply that the virus is found in the natural environment. These cases of LCDV were diagnosed in wild animals which imply that the virus is found in the natural environment. This fact is reported in the literature that most cases are of animals raised in aquaculture farms [5,6,8,17,31]. Macroposciially, the animals had nodular lesions measuring approximately 1-2 mm, warty aspect and irregular surface, with coloring cream to reddish (Figs. 1 and 2), each node representing a cell infected by LCDV, also called lymphocyst or lymphocyst cell [25]. The infected cell staining (nodules), or infected clustered cells may vary when the dermis epithelial tissue is rich in chromatophores, which can modify the coloring to darker shades [32].

The virus shows affinity for replication in dermal fibroblasts, resulting in hypertrophied cells mainly on the dermis and flippers [26], which can be evidenced in the lesion microscopic characteristics (Fig. 3). In addition to the fibroblasts, some authors suggest other cell types target of infection, such as hepatocytes and cells of mononuclear phagocytic system [33], not being frequent cases of localized lesions in the eyes and internal organs with systemic involvement [1], which has been discussed by some authors that describe the systemic involvement being considered only in experimental cases, while other authors reported the occurrence of disease by natural means [34,35,36]. In a study on the virus tissue location after experimental infection intravenously, the hypothesis was raised that the distribution of antigen in blood cells was negative for the presence of LCDV, revealing that the virus could infect red blood cells which can only infect certain types of leukocytes, which would probably cause the entry of the virus structure in the bloodstream, generating a systemic infection [37].

Fig. 3. Skin specimen of *Micropogonias furnieri* with multiple cystic formations, thick homogeneous capsule (arrows) and basophilic small structures (*) with proliferation of fibroblasts surrounding the cystic structures (thick arrow). H-E. 10X
Fig. 4. Skin of *Paralichthys orbignyanus* specimen where the same cystic structures are observed in croaker *Micropogonias furnieri* with presence of hyaline capsule strongly homogeneous PAS+ (arrows) inside the nodules multiple small basophilic structures are observed (*). PAS. 40X

The cytoplasm undergoes changes, developing intracytoplasmic basophilic inclusion bodies as dense vacuolated bodies [26], which can be seen in Fig. 3. This cell standard has already been reported in other studies [38], which indicate that the histopathology allows us a diagnosis of the disease characterized by fibroblastic cells with basophilic cytoplasm and prominent nuclei, discarding the differential diagnosis of a neoplastic lesion or parasitic etiology. The presence of hyaline capsule can also be evidenced by means of the Periodic Acid-Schiff (PAS) technique (Fig. 4), where a thick hyaline capsule can be observed circling the infected hypertrophied fibroblast, which according to some authors can be seen especially in mature lymphocyst cells [26]. The disease molecular diagnosis, although provides accuracy in the agent identification, represents a method that is more expensive and, depending on the virus protein profiles, needs more time for the diagnosis conclusion [26].

The two cases here reported in different regions, but with similar climatic characteristics, raises an important point in the occurrence of the disease, since some authors have already reported the importance of temperature in the virus persistence on the Japanese plaice tissue, where it was noted that at temperatures of 10°C, LCDV may persist for long periods on the fish epidermis in the form of a subclinical infection, coming to demonstrate clinical signs and presence of lymphocyst cells at temperatures of 20°C, considered ideal for the virus infectivity [39]. Inadequate conditions in cultivation may also influence in the disease clinical manifestation, such as high densities in the tanks, excessive manipulation, low salinity, low dissolved oxygen, nutritional deficiencies and water biological pollution [18,25,40,41,42,43,44,45,46], which is a point to be considered, since the fish could be in stress situations in the tanks where they were kept.

4. CONCLUSION

The reported cases were based on the clinical and macroscopic aspects of lymphocyst disease, along with the histopathology, which confirmed...
the presence of the disease in the analyzed tissues, demonstrating that it is a method that is fast and effective, not being necessary to resort to other methods for a conclusive diagnosis of the disease.

ACKNOWLEDGEMENTS

This study was supported by the research funds from MCT/CNPq - Project #301245/2016-09 MCT/CNPq/CT- Agronegocio/MPA Public Notice 036/2009 Project #308013/2009-3, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Ministério da Pesca e Aquicultura (MPA).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

